
AMR Godunov Unsplit Algorithm and

Implementation

P. Colella
D. T. Graves
T. J. Ligocki
D. F. Martin

B. Van Straalen

Applied Numerical Algorithms Group
NERSC Division

Lawrence Berkeley National Laboratory
Berkeley, CA

June 9, 2004

Contents

1 Algorithm 2

1.1 Notation . 2
1.2 Multidimensional higher-order Godunov method 3

1.2.1 Outline . 3
1.2.2 Slope Calculation . 5

1.3 Artificial Viscosity . 6
1.4 Extension to PPM . 7
1.5 Recursive AMR Update . 8

2 Interface 10

2.1 Architecture Diagram . 10
2.2 Data Design . 10

2.2.1 Global Data Structures . 10
2.2.1.1 Chombo Container Classes 10
2.2.1.2 Time-dependent AMR 12

2.2.2 Internal Software Data Structures 12
2.3 Class Hierarchy . 12

2.3.1 Class AMRLevel<name> . 13
2.3.2 Class LevelGodunov . 14
2.3.3 Class PatchGodunov . 16
2.3.4 Class GodunovPhysics . 17
2.3.5 Class PhysIBC . 20

1

Chapter 1

Algorithm

This section describes the numerical method for integrating systems of conservation laws
(e.g., the Euler equations of gas dynamics) on an AMR grid hierarchy. This is done using
an unsplit, second-order Godunov method.

1.1 Notation

Most of the notation used here is introduced in the Chombo design document [3]. The
main exception to that is a notation using | symbols. For computations at cell centers
the notation

CC = A | B | C

means that the 3-point formula A is used for CC if all cell centered values it uses are
available, the 2-point formula B is used if current cell borders the high side of the physical
domain (i.e., no high side value), and the 2-point formula C is used if current cell borders
the low side of the physical domain (i.e., no low side value). For computations at face
centers the analogous notation

FC = A | B | C

means that the 2-point formula A is used for FC if all cell centered values it uses are
available, the 1-point formula B is used if current face coincides with the high side of the
physical domain (i.e., no high side value), and the 1-point formula C is used if current
face coincided with the low side of the physical domain (i.e., no low side value).

2

1.2 Multidimensional higher-order Godunov method

The methods developed here have their origins in Colella [5] and Saltzman [7]. We are
solving a hyperbolic system of equations of the form

∂U

∂t
+

D−1∑

d=0

∂F d

∂xd
= S

We also assume there may be a change of variables W = W (U) (W ≡ “primitive
variables”) that can be applied to simplify the calculation of the characteristic structure
of the equations. This leads to a similar system of equations in W .

∂W

∂t
+

D−1∑

d=0

Ad(W)
∂W d

∂xd
= S ′

Ad = ∇UW · ∇UF
d · ∇WU

S ′ = ∇UW · S

Note, this system is not in conservation form as the primitive variables, in general, are
not conserved quantities.

1.2.1 Outline

Given Un
i
and Sn

i
, we want to compute a second-order accurate estimate of the fluxes:

F
n+ 1

2

i+ 1

2
ed
≈ F d(x0 + (i +

1
2
e
d)h, tn + 1

2
∆t). The transformations ∇UW and ∇WU are

functions of both space and time. We shall leave the precise centering of these transfor-
mations vague as this will be application dependent. In outline, the method is given as
follows.

1. Transform to primitive variables, and compute slopes (the definition of ∆dWi is
given in section 1.2.2):

Given W n
i
= W (Un

i
), compute ∆dWi, for 0 ≤ d < D

2. Compute the effect of the normal derivative terms and the source term on the
extrapolation in space and time from cell centers to faces. For 0 ≤ d < D,

Wi,±,d = W n
i
+
1

2
(±I −

∆t

h
Ad

i
)P±(∆

dWi) (1.1)

Ad
i
= Ad(Wi)

P±(W) =
∑

±λk>0

(lk ·W)rk

Wi,±,d = Wi,±,d +
∆t

2
∇UW · Sn

i
(1.2)

3

where λk are eigenvalues of A
d
i
, and lk and rk are the corresponding left and right

eigenvectors.

3. Compute estimates of F d suitable for computing 1D flux derivatives ∂F d

∂xd
using a

Riemann solver for the interior, R, and for the boundary, RB. Here, and in what
follows, ∇UW need only be first-order accurate, e.g., differ from the value at Un

i

by O(h).

F 1D

i+ 1

2
ed
= R(Wi,+,d,Wi+ed,−,d, d)

| RB(Wi,+,d, (i+
1

2
e
d)h, d)

| RB(Wi+ed,−,d, (i+
1

2
e
d)h, d)

(1.3)

4. In 3D compute corrections to Wi,±,d corresponding to one set of transverse deriva-
tives appropriate to obtain (1, 1, 1) diagonal coupling. In 2D skip this step.

Wi,±,d1,d2
= Wi,±,d1

−
∆t

3h
∇UW · (F 1D

i+ 1

2
ed2
− F 1D

i− 1

2
ed2
) (1.4)

5. In 3D compute fluxes corresponding to corrections made in the previous step. In
2D skip this step.

F
i+ 1

2
ed1 ,d2

= R(Wi,+,d1,d2
,Wi+ed1 ,−,d1,d2

, d1)

| RB(Wi,+,d1,d2
, (i+

1

2
e
d1)h, d1)

| RB(Wi+ed1 ,−,d1,d2
, (i+

1

2
e
d1)h, d1)

(1.5)

d1 6= d2, 0 ≤ d1, d2 < D

6. Compute final corrections to Wi,±,d due to the final transverse derivatives.

2D: W
n+ 1

2

i,±,d = Wi,±,d −
∆t

2h
∇UW · (F 1D

i+ 1

2
ed1
− F 1D

i− 1

2
ed1
) (1.6)

d 6= d1, 0 ≤ d, d1 < D

3D: W
n+ 1

2

i,±,d = Wi,±,d −
∆t

2h
∇UW · (F

i+ 1

2
ed1 ,d2

− F
i− 1

2
ed1 ,d2

) (1.7)

−
∆t

2h
∇UW · (F

i+ 1

2
ed2 ,d1

− F
i− 1

2
ed2 ,d1

)

d 6= d1 6= d2, 0 ≤ d, d1, d2 < D

4

7. Compute final estimate of fluxes.

F
n+ 1

2

i+ 1

2
ed
= R(W

n+ 1

2

i,+,d,W
n+ 1

2

i+ed,−,d
, d)

| RB(W
n+ 1

2

i,+,d, (i+
1

2
e
d)h, d)

| RB(W
n+ 1

2

i+ed,−,d
, (i+

1

2
e
d)h, d)

(1.8)

8. Update the solution using the divergence of the fluxes.

Un+1
i

= Un
i
−
∆t

h

D−1∑

d=0

(F
n+ 1

2

i+ 1

2
ed
− F

n+ 1

2

i− 1

2
ed
) (1.9)

1.2.2 Slope Calculation

We will use the 4th order slope calculation in Colella and Glaz [2] combined with charac-
teristic limiting.

∆dWi = ζi δvL(∆d
4Wi,∆

d
−Wi,∆

d
+Wi) | ∆

d
2Wi | ∆

d
2Wi

∆d
4Wi =

2

3
((W −

1

4
∆d

2W)i+ed − (W +
1

4
∆d

2W)i−ed)

∆d
2Wi = δvL(∆̃d

2Wi,∆
d
−Wi,∆

d
+Wi) | ∆

d
−Wi | ∆

d
+Wi

∆̃d
2Wi =

1

2
(W n

i+ed
−W n

i−ed
)

∆d
−Wi = W n

i
−W n

i−ed
, ∆d

+Wi =W n
i+ed

−W n
i

At domain boundaries, ∆d
−Wi and ∆

d
+Wi may be overwritten by the application to provide

application dependent slopes at the boundaries (see section 2.3.5). There are two versions
of the van Leer limiter δvL(δWC , δWL, δWR) that are commonly used. One is to apply a
limiter to the differences in characteristic variables.

1. Compute expansion of one-sided and centered differences in characteristic variables.

αk
C = lk · δWC

αk
L = lk · δWL

αk
R = lk · δWR

2. Apply van Leer limiter

αk =

{
min(|αk

C |, 2|α
k
L |, 2|α

k
R |) if αk

L · α
k
R > 0

0 otherwise

5

3. δvL =
∑

k α
krk

Here, lk = lk(W n
i
) and rk = rk(W n

i
).

For a variety of problems, it suffices to apply the van Leer limiter componentwise to
the differences. Formally, this can be obtain from the more general case above by taking
the matrices of left and right eigenvectors to be the identity.
Finally, we give the algorithm for computing the flattening coefficient ζi. WE assume

that there is a quantity corresponding to the pressure in gas dynamics (denoted here
as p) which can act as a steepness indicator, and a quantity corresponding to the bulk
modulus (denoted here asK, given as γp in a gas), that can be used to non-dimensionalize
differences in p.

ζi =

{
min

0≤d<D
ζd
i

if
∑D−1

d=0 ∆
d
1u

d
i
< 0

1 otherwise
(1.10)

ζd
i
= min3(ζ̃

d, d)i

ζ̃d
i
= η(∆d

1pi, ∆
d
2pi, min3(K, d)i)

∆d
1pi =

1

2
(pi+ed − pi−ed) | pi − pi−ed | pi+ed − pi

∆d
2pi = (∆

d
1pi+ed +∆

d
1pi−ed) | 2∆

d
1pi | 2∆

d
1pi

The functions min3 and η are given below.

min3(K, d)i = min(Ki+ed , Ki, Ki−ed) | min(Ki, Ki−ed) | min(Ki+ed , Ki)

η(δp1, δp2, p0) =

0 if |δp1|
p0

> d and |δp1|
|δp2|

> r1

1−
|δp1|
|δp2|

−r0

r1−r0
if |δp1|

p0
> d and r1 ≥

|δp1|
|δp2|

> r0

1 otherwise

r0 = 0.75, r1 = 0.85, d = 0.33

1.3 Artificial Viscosity

We add a small O(h2) difusive term to the flux prior to the final conservative difference
step. This ”artificial viscosity” term serves to supress instabilities occuring in multidimen-
sional shocks that are nearly aligned with one of the coordinate directions; for a detailed
discussion, see [4].

6

F
η+ 1

2

i+ 1

2
ed
= F

η+ 1

2

i+ 1

2
ed
−K

i+ 1

2
ed
(Un

i+ed
− U

η
i
)

K
i+ 1

2
ed
= K0max(−(D~u)

i+ 1

2
ed
, 0)

(D~u)
i+ 1

2
ed
=(ud

i+ed
− ud

i
)+

∑

d′ 6=d

1

4
((∆d′

+ud
′

)i + (∆
d′

−u
d′)i + (∆

d′

+ud
′

)i+ed + (∆
d′

−u
d′)i+ed)

For typical time-dependent calculations of shocks in gases, K0 = .1.

1.4 Extension to PPM

We can extend this algorithm to the case of using the piecewise-parabolic method of Colella
and Woodward [4] to perform the normal predictor step [6]. We begin by computing
spatially extrapolated face-centered values at the low and high edges of the cells.

W± =
1

2
(W n

i±e
+W n

i
)±

1

12
(∆d

2Wi −∆
d
2Wi±e) | W

n
i
−
1

2
∆d

2Wi | W
n
i
+
1

2
∆d

2Wi

αk
± = lk · (W± −W n

i
)

The van Leer slopes ∆d
2W can be limited componentwise, or by using limiting in

characteristic variables. Similarly, there are two options for limiting the parabolic profile.
One is to apply the PPM limiter to the characteristic variables αk

±: if α
k
+αk

− < 0, then

αk
+ :=s ·min(s · αk

+,−2s · αk
−) if (α

k
+)

2 > (αk
−)

2

αk
− :=s ·min(s · αk

−,−2s · α
k
+) otherwise

where s = sign(αk
+ − αk

−). If α
k
+αk

− ≥ 0, then we set αk
+, αk

− := 0. An alternative
approach is to apply the limiter above componentwise to the differences W± −W n

i
, and

then compute the characteristic amplitudes αk
±. If appropriate, we also apply the flattening

coefficients (1.10) to the parabolic profiles after the limiting for monotonicity has been
applied: αk

± := αk
± · ζi.

Finally, we use the PPM predictor to compute the normal predictor corresponding to
(1.1).

Wi,±,d =W n
i
+

∑

k

(αk
± +

1

2
σk±(±(α

k
− − αk

+)− (α
k
− + αk

+)(3− 2σ
k
±)) · r

k

σk± =± λkd(W
n
i
)
∆t

∆x
if ± λkd(W

n
i
) > 0

= max(±λ±(W n
i
), 0)

∆t

∆x
otherwise.

Here Here λ{+,−} is the {maximum , minimum} of the wave speeds over all of the wave
families.

7

1.5 Recursive AMR Update

We extend this method to an adaptive mesh hierarchy using the Berger-Oliger algorithm.
We define

{U l}lmax

l=0 , U l : Ωl → R
m

U l = U l(tl). Here {tl} are a collection of discrete times that satisfy the temporal analogue
of proper nesting. {tl} = {tl−1+k∆tl : 0 ≤ k < nlref} The algorithm in [1] for advancing

the solution in time is given in pseudo-code in figure 1.1. The discrete fluxes ~F are
computed by using piecewise linear interpolation to define an extended solution on

Ω̃ = G(Ωl, p) ∩ Γl , Ũ : Ω̃→ R
m

Ũi =

{
U l

i
(tl) for i ∈ Ωl

Ipwl((1− α)U l−1(tl−1) + α U l−1(tl−1 +∆tl−1))i otherwise

α =
tl − tl−1

∆tl−1

and then computing fluxes for the advance as outlined in Section 1.2.

8

procedure advance (l)

U l(tl +∆tl) = U l(tl)−∆tD ~F l on Ωl

if l < lmax

δF l+1
d = −F l

d on ζ l+1
+,d ∪ ζ l+1

−,d , d = 0, ...,D− 1

end if
if l > 0

δF l
d :=

1

nl−1

ref

< F l
d > on ζ l+,d ∪ ζ l−,d, d = 0, ...,D− 1

end if
for q = 0, ..., nlref − 1

advance(l + 1)
end for
U l(tl +∆tl) = Average(U l+1(tl +∆tl), nlref) on Cnlref (Ω

l+1)

U l(tl +∆tl) := U l(tl +∆tl)−∆tlDR(δF
l+1)

tl := tl +∆tl

nlstep := nlstep + 1

if (nlstep = 0 mod nregrid) and (n
l−1
step 6= 0 mod nregrid)

regrid(l)
end if

Figure 1.1: Pseudo-code description of the Berger-Colella AMR algorithm for hyperbolic
conservation laws.

9

Chapter 2

Interface

2.1 Architecture Diagram

The AMRGodunovUnsplit code makes extensive use of the AMR time-dependent infras-
tructure contained in the Chombo libararies. A basic schematic of the class relationships
between Chombo and AMRGodunov classes is depicted in Figure 2.1. Where appropriate,
the particular implementation for a polytropic gas will be referenced.

2.2 Data Design

The AMR unsplit hyperbolic (AMRGodunov) code makes extensive use of the Chombo
C++ libraries. The important data structures used in this application are all provided by
Chombo, as are many of the utilities which facilitate implementations of block-structured
adaptive algorithms. For more detailed descriptions of these classes, see the Chombo
documentation [3].

2.2.1 Global Data Structures

The important variables in the AMRGodunov code are the conserved variable vector ~U .
These variables are contained in container classes provided by Chombo.

2.2.1.1 Chombo Container Classes

A logically rectangular region in space is defined by a Box. Cell-centered data on an
individual Box is generally contained in an FArrayBox.
A set of disjoint Box’s (generally corresponding to all the grids at a single refinement

level) is defined by a DisjointBoxLayout. Data on a DisjointBoxLayout is generally
contained in a LevelData, which is a templated container class to facilitate computations
on disjoint unions of rectangles.
All of these classes are further documented in the Chombo documentation [3].

10

initialData()
postInitialize()
computeDt()
computeInitialDt()

initialGrid()

AMRLevel

advance()

m_UOld, m_UNew: class LevelData<FArrayBox>

regrid()
postRegrid()

postTimeStep()

tagCells()

m_patchGodunov: class PatchGodunov

m_levelGodunov: class levelGodunov

m_patchGodunov: class PatchGodunov*
m_patcher: class PiecewiseLinearFilpatch

step()
getMaxWaveSpeed()

levelGodunov

AMRLevelPolytropicGas

PatchGodunov

GodunovPhysics* m_gdnvPhysics

GodunovUtilities m_util;

setCurrentBox()

updateState()
getMaxWaveSpeed()

Figure 2.1: Software configuration diagram for the AMRGodunov code showing basic
relationships between AMRGodunov classes and Chombo classes for the polytropic gas
example.

11

2.2.1.2 Time-dependent AMR

The basic structure for the code is provided by the Chombo AMRTimeDependent library.
The AMR class manages the global recursive timestep, along with initializing the hierarchy
of grids and other functionality involving data on more than one level of the AMR grids.
The AmrLevel class manages data and functionality for a single AMR level, includ-

ing the single-level advance. The AMRLevelPolytropicGas class is derived from the
AmrLevel class and contains the functionality specific to the polytropic gas algorithm.

2.2.2 Internal Software Data Structures

For the polytropic gas example, the AMRLevel-derived class AMRLevelPolytropicGas
contains the primary data fields necessary to update the solution on one AMR level, in
particular the old- and new-time conserved variable fields (~U(t`) and ~U(t` +∆t`)). Each
AMRLevelPolytropicGas object also contains a GodunovPhysics-derived object which
contains the physics-dependent part of the algorithm; for the polytropic gas example, this
is the PolytropicPhysics class, which contains the functionality to perform updates
on a single logically rectangular patch (which is dependent on the physics of the problem
being solved). Also, every AMRLevelPolytropicGas also contains a levelGodunov class
as a member object. This levelGodunov member contains the functionality necessary
for updating the conserved variables on a single level by one timestep, using the physics-
specific PatchGodunov-derived class (in this case, a PolytropicPhysics object).

2.3 Class Hierarchy

The principal AMRGodunovUnsplit classes follow.

• AMRLevel<name>, the AMRLevel-derived class which is driven by the AMR class.
This class is application/problem dependent but is included here to document some
of the data members and functions which will probably be common to many appli-
cations.

• LevelGodunov, a class owned by AMRLevel<name>. LevelGodunov advances the
solution on a level and can exist outside the context of an AMR hierarchy. This
class makes possible Richardson extrapolation for error estimation (not currently
implemented).

• PatchGodunov, is a class which encapsulates the operations required to ad-
vance a solution on a single patch/grid. PatchGodunov owns a pointer to a
GodunovPhysics- derived class. PatchGodunov also owns a GodunovUtilities
object. At the present time (6/10/2004), the example directory PPMAMRGodunov
contains the version of the unsplit infrastructure documented here that supports
both the PLM and PPM versions of the algorithm by changing a single line of code

12

(the default is the PPM version). We will shortly release a new version of the library
for which the PLM or PPM algorithms can be chosen by changing an argument to
the PatchGodunov constructor, which in turn will be read from input by the driver
program.

• GodunovUtilities is a class which handles operations common to many Godunov
applications, such as slope calculations, construction of PPM interpolants, limiters,
artificial viscosity coefficients, and flattening. These operations are independent of
the details of physical system to which the method is being applied, although not all
of them are applicable, in general: for example, artificial viscosity can be computed
only for those systems in which the primitive variables include a vector velocity, i.e.
continuum-mechanical systems.

• GodunovPhysics is a base class which provides an interface to the physics-
dependent parts of the Godunov application. For many hyperbolic conservation law
applications, it is necessary only to implement the GodunovPhysics and PhysIBC
interfaces for that system, leaving the remainder of the code unchanged.

• PhysIBC, is a base class which encapsulates initial conditions and flux-based bound-
ary condtions.

2.3.1 Class AMRLevel<name>

AMRLevel<name> is the AMRLevel-derived class with which the AMR class will directly
interact. It’s user interface is therefore constrained by the AMRLevel interface. It is
also an application/problem dependent portion of the code but there are important data
members and function which will probably be part of any implementation. These are
documented here. The important data members of the AMRLevel<name> class are as
follows:

• LevelData<FArrayBox> m_UOld, m_UNew;

The conserved variables at old and new times. Both need to be kept because
subcycling in time requires temporal interpolation.

• Real m_cfl, m_dx;

CFL number and grid spacing for this level.

• FineInterp m_fineInterp;

Interpolation operator for refining data during regridding that were previously only
covered by coarser data.

• CoarseAverage m_coarse_average;

This is the averaging operator which replaces data on coarser levels with the average
of the data on this level where they coincide in space.

13

The AMRLevel<name> implementation of the AMRLevel currently does the following
for each of the important interface functions:

• Real advance()

This function advances the conserved variables by one time step. It calls the
LevelGodunov::step function. The time step returned by that function is stored
in a member data, m_dtNew.

• void postTimeStep()

This function calls refluxing from the next finer level and replaces its solution with
an average from the next finer level where they coincide.

• void regrid(const Vector<Box>& a_newGrids)

This function changes the union of rectangles over which the data is defined. At
places where the two sets of rectangles intersect, the data is copied from the previous
set of rectangles. At places where there was only data from the next coarser level,
piecewise linear interpolation is used to fill in the data.

• void initialData()

In this function the initial state is filled by calling the initial condition member data
of m_pathGodunov, namely getPhysIBC()->initialize().

• void computeDt()

This function returns the time step stored during the advance() call, m_dtNew.

• void computeInitialDt()

This function calculates the time step using the maximum wavespeed returned by a
LevelGodunov::getMaxWaveSpeed call. Given the maximum wavespeed, w, the
initial time step multiplier, K, and the grid spacing at this level, h, then the initial
time step, ∆t, is given by:

∆t = K
h

w
. (2.1)

• DisjointBoxLayout loadBalance(const Vector<Box>& a_grids)

Calls the Chombo load balancer to create a load balanced layout. This is returned.

2.3.2 Class LevelGodunov

LevelGodunov is a class owned by AMRLevel<name>. LevelGodunov advances the so-
lution on a level and can exist outside the context of an AMR hierarchy. This class makes
possible Richardson extrapolation for error estimation. The important functions of the
public interface of LevelGodunov are:

14

• void define(const DisjointBoxLayout& a_thisDisjointBoxLayout,

const DisjointBoxLayout& a_coarserDisjointBoxLayout,

const ProblemDomain& a_domain,

const int& a_refineCoarse,

const Real& a_dx,

const PatchGodunov* const a_patchGodunovFactory,

const bool& a_hasCoarser,

const bool& a_hasFiner);

Define the internal data structures. For the coarsest level, an empty DisjointBoxLay-
out is passed in for coaserDisjointBoxLayout.

– a_thisDisjointBoxLayout, a_coarserDisjointBoxLayout: The layouts
at this level and the next coarser level. For the coarsest level, an empty
DisjointBoxLayout is passed in for coarserDisjointBoxLayout.

– a_domain: The problem domain on this level.

– a_refineCoarse: The refinement ratio between this level and the next coarser
level.

– a_dx: The grid spacing on this level.

– a_patchGodunovFactory: The factory for the integrator which can advance
each patch/grid a time step. Boundary conditions and initial conditions are
also encapsulated in this object. Note: this object is its own factory.

– a_hasCoarser, a_hasFiner: This level has a coarser (or finer) level. These
are used when coarser or finer levels are needed or when data which exists
between levels (e.g., flux registers) is needed.

• Real step(LevelData<FArrayBox>& a_U,

LevelData<FArrayBox>& a_flux[CH_SPACEDIM],

LevelFluxRegister& a_coarserFluxRegister,

LevelFluxRegister& a_finerFluxRegister,

const LevelData<FArrayBox>& a_S,

const LevelData<FArrayBox>& a_UCoarseOld,

const Real& a_TCoarseOld,

const LevelData<FArrayBox>& a_UCoarseNew,

const Real& a_TCoarseNew,

const Real& a_time,

const Real& a_dt);

Advance the solution at this timeStep for one time step.

– a_U: The current solution at this level which will be advanced by a_dt to
a_time.

– a_flux: A SpaceDim array of face-centered LevelData<FArrayBox>s which
may be used to pass face-centered data (such as fluxes) back and forth from
the function.

15

– a_coarserFluxRegister, a_finerFluxRegister: The flux registers be-
tween this level and the next coarser (or finer) levels.

– a_S: Source terms from the RHS of the system of PDEs being solved/integrated.
If there are no source terms a_S should be null constructed and not defined
(i.e. a_S’s define() function should not called).

– a_UCoarseOld, a_TCoarseOld: The solution at the next coarser level at the
old time, a_TCoarseOld.

– a_UCoarseNew, a_TCoarseNew: The solution at the next coarser level at the
new time, a_TCoarseNew.

– a_time: The time to which to advance the current solution. This should be
between a_TCoarseOld and a_TCoarseNew.

– a_dt: The time step at this level.

• Real getMaxWaveSpeed(const LevelData<FArrayBox>& a_U);

Return the maximum wave speed of the input a_U (the conserved variables) for
purposes of limiting the time step.

2.3.3 Class PatchGodunov

The base class PatchGodunov provides an interface to LevelGodunov for managing the
update of a single patch using the unsplit second-order Godunov method described above.
It provides a top-level implementation of the algorithm by calling member functions in the
GodunovUtilities class (which contains physics-independent components that make up
the algorithm) and physics-dependent functions (contained in the object pointed at by
the GodunovPhysics* pointer).
There are three types of grid variables that appear in the unsplit Godunov method in

section (1.2): conserved variables, primitive variables, fluxes, and source terms, denoted
below by U, W, F, and S, respectively. It is often convenient to have the number of
primitive variables and fluxes exceed the number of conserved variables. In the case of
primitive variables, redundant quantities are carried that parameterize the equation of
state in order to avoid multiple calls to that the equation of state function. In the case of
fluxes, it is often convenient to split the flux for some variables into multiple components,
e.g., dividing the momentum flux into advective and pressure terms. The API given here
provides the flexibility to support various possibilities.

The following virtual functions are part of the public interface. Some have default imple-
mentations which the user will not need to change for a variety of physical problems.

• virtual void define(ProblemDomain& a_domain,

const Real& a_dx);

Set the domain and grid spacing.

16

– a_domain: The problem domain index space.

– a_dx: The grid spacing.

• virtual void setCurrentTime(const Time& a_time);

Set the current time.

– a_time: The current time.

• virtual void setCurrentBox(const Box& a_currentBox);

Set the box over which the conserved variables with be updated for this patch/grid.

– a_box: The box over which the conversed variables with be updated.

• virtual void updateState(FArrayBox& a_U,

FArrayBox a_F[SPACEDIM],

Real& a_maxWaveSpeed,

const FArrayBox& a_S,

const Real& a_dt,

const Box& a_box);

Update the conserved variables, return the fluxes used for this, and the maximum
wave speed in the updated solution.

– a_U: The conserved variables to be updated.

– a_F[]: The fluxes each of the faces used of update the conserved variables
(used for refluxing).

– a_maxWaveSpeed: The maximum wave speed for this patch/grid.

– a_S: The source terms - if there are no source terms this should be a null
constructed object.

– a_dt: The time step for this patch/grid.

– a_box: The box to be used for the computation/update.

2.3.4 Class GodunovPhysics

GodunovPhysics is an interface class owned and used by PatchGodunov through which a
user specifies physics of the problem. The important user functions of GodunovPhysics
are as follows.

• virtual void setPhysIBC(PhysIBC* a_bc);

Set the initial and boundary condtion pointer used by the integrator for the current
level.

– a_bc: The initial and boundary condition object for the current level.

17

• virtual Real getMaxWaveSpeed(const FArrayBox& a_U,

const Box& a_box) = 0;

Compute the maximum wave speed of the state over the region.

– a_U: The conserved state.

– a_box: The region over which to calculate the max wave speed.

• virtual GodunovPhysics* new_godunovPhysics() const = 0;

Factory method. Reproduce oneself and return a pointer to the new object.

• virtual void charAnalysis(FArrayBox& a_dW,

const FArrayBox& a_W,

const int& a_dir,

const Box& a_box) = 0;

Compute the sum of the right eigenvectors times the weights dW.

– a_dW On input, a_dW contains the increments of the characteristic variables.
On output, it contains the increments in the primitive variables.

– a_W: The state in primitive variables.

– a_box: The region over which we calculate.

– a_dir: Spatial direction.

• virtual void charSynthesis(FArrayBox& a_dW,

const FArrayBox& a_W,

const int& a_dir,

const Box& a_box) = 0;

– a_dW On input, a_dW contains the increments of the characteristic variables.
On output, it contains the increments in the primitive variables.

– a_W: The state in primitive variables.

– a_box: The region over which we calculate.

– a_dir: Spatial direction.

• virtual void charValues(FArrayBox& a_lambda,

const FArrayBox& a_W,

const FArrayBox& a_dW,

const int& a_dir,

const Box& a_box) = 0;

Compute the characteristic values (eigenvalues).

– a_lambda: Eigenvalues of W.

18

– a_dW: Increment to the state in primitive variables.

– a_W: The state in primitive variables.

– a_box: The region over which we calculate.

– a_dir: Spatial direction.

• virtual void quasilinearUpdate(FArrayBox& a_AdWdx,

const FArrayBox& a_wHalf,

const FArrayBox& a_W,

const Real& a_scale,

const int& a_dir,

const Box& a_box) = 0;

Compute the partial update based on upwind differencing to the primitive variables
due to derivatives in the a_dir direction, as in, e.g., (1.4,1.6,1.7).

– a_AdWdx: output upwind difference estimate of τAd
∂W
∂xd
.

– a_wHalf: solution to the riemann problem at adjacent cell faces in the d

direction.

– a_W: cell-centered values that are being corrected.

– a_scale: scale factor τ .

– a_box: The cell-centered box over which the calculation is carried out.

– a_dir: Spatial direction.

• virtual void riemann(FArrayBox& a_WStar,

const FArrayBox& a_WLeft,

const FArrayBox& a_WRight,

const FArrayBox& a_W,

const Real& a_time,

const int& a_dir,

const Box& a_box) = 0;

Compute the solution to the Riemann problem.

– a_WStar: Riemann problem solution.

– a_WLeft: Solution on the left side of the discontinuity.

– a_WRight: Solution on the right side of the discontinuity.

– a_W: The state in primitive variables.

– a_box: The region over which we calculate.

– a_dir: Spatial direction.

– a_time: The solution time.

19

• virtual void postNormalPredictor(FArrayBox& a_dWLow,

FArrayBox& a_dWHigh,

const FArrayBox& a_W,

const int& a_dir,

const Box& a_box) = 0;

Perform post-processing of values for normal predictor. This is done, for example, to
add any spatial derivatives that are not accounted for in the characteristic analysis,
such as occurs for the Stone correction in MHD.

– a_dWLow: Extrapolated solution on the low side of the cell.

– a_WHigh: Extrapolated solution on the high side of the cell.

– a_W: Cell-centered solution value at the beginning of the time step.

– a_box: Domain over which the calculation is carried out.

– a_dir: Spatial direction.

2.3.5 Class PhysIBC

PhysIBC is an interface class owned and used by PatchGodunov through which a user spec-
ifies the initial and boundary of conditions of their particular problem. These boundary con-
ditions are flux-based. PhysIBC contains as member data the mesh spacing (Real m_dx)
and the domain of computation (ProblemDomain m_domain). This object serves as its
own factory. The important user functions of PhysIBC are as follows.

• virtual void define(const ProblemDomain& a_domain

const Real& a_dx);

Define the internals of the class.

– a_domain: The problem domain.

– a_dx: The grid spacing.

• virtual PhysIBC* new_physIBC() = 0;

This is a factory method. It returns a new PhysIBC object.

• virtual void primBC(FArrayBox& a_WGdnv,

const FArrayBox& a_Wextrap,

const FArrayBox& a_W,

const int& a_dir,

const Side::LoHiSide& a_side,

const Real& a_time) = 0;

Return the flux boundary condtion on the boundary of the domain.

20

– a_WGdnv: The primitive variables over the face-centered box. The values in the
array that correspond to the boundary faces of the domain are to be replaced
with boundary values.

– a_Wextrap: The extrapolated value of the primitive variables to the a_side
of the cells in direction a_dir. This data is cell-centered.

– a_W: The primitive variables at the start of the time step. This data is cell-
centered.

– a_dir, a_side: The direction normal and the side of the domain where the
boundary condition fluxes are needed.

– a_time: The physical time of the problem - for time varying boundary condi-
tions.

• virtual void setBdrySlopes(FArrayBox& a_dW,

const FArrayBox& a_W,

const int& a_dir,

const Real& a_time) = 0;

The boundary slopes are already set to one sided difference approximations on
entry. If this function doesn’t change them they will be used for the slopes at the
boundaries.

– a_dW: The slopes over the box.

– a_W: The primitive variables at the start of the time step.

– a_dir: The direction normal.

– a_time: The physical time of the problem - for time varying boundary condi-
tions.

• virtual void artViscBC(FArrayBox& a_F,

const FArrayBox& a_U,

const FArrayBox& a_divVel,

const int& a_dir,

const Real& a_time);

Apply artificial viscosity to the fluxes of the conserved variables at the boundaries.
The default implementation does nothing to the fluxes.

– a_F: The fluxes over the box. This values in the array that correspond to the
boundary faces of the domain are to be updated applying the artificial viscosity
at the boundaries.

– a_U: The conserved variables.

– a_divVel: The face centered divergence of the velocity.

– a_dir: The direction normal.

21

– a_time: The physical time of the problem - for time varying boundary condi-
tions.

• virtual void initialize(LevelData<FArrayBox>& a_U);

Fill the input with the intial conserved variables values of the problem.

– a_U: The conserved variables.

22

Bibliography

[1] M. J. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics.
J. Comput. Phys., 82(1):64–84, May 1989.

[2] P. Colella and H. M. Glaz. Efficient solution algorithms for the Riemann problem for
real gases. J. Comput. Phys., 59:264, 1985.

[3] P. Colella, D. T. Graves, T. J. Ligocki, D. F. Martin, D. Modiano, D. B. Serafini,
and B. Van Straalen. Chombo Software Package for AMR Applications - Design
Document. unpublished, 2000.

[4] P. Colella and P. R. Woodward. The piecewise parabolic method (PPM) for gas-
dynamical simulations. J. Comput. Phys., 54:174–201, 1984.

[5] Phillip Colella. Multidimensional upwind methods for hyperbolic conservation laws. J.

Comput. Phys., 87:171–200, 1990.

[6] H. Miller G and P. Colella. A conservative three-dimensional Eulerian method for
coupled solid-fluid shock capturing. J. Comput. Phys., 183:26–82, 2002.

[7] Jeff Saltzman. An unsplit 3d upwind method for hyperbolic conservation laws. J.

Comput. Phys., 115:153–168, 1994.

23

